a2 United States Patent

Patil et al.

US009229819B2

US 9,229,819 B2
*Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) ENHANCED RELIABILITY IN
DEDUPLICATION TECHNOLOGY OVER

STORAGE CLOUDS
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(72) Inventors: Sandeep R. Patil, Pune (IN); Sri
Ramanathan, Lutz, FL. (US);
Riyazahamad M. Shiraguppi, Pune
(IN); Prashant Sodhiya, Pune (IN);
Matthew B. Trevathan, Roswell, GA
(US)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 14/524,442
(22) Filed: Oct. 27,2014
(65) Prior Publication Data
US 2015/0046410 A1 Feb. 12,2015
Related U.S. Application Data
(63) Continuation of application No. 13/455,528, filed on
Apr. 25, 2012, now Pat. No. 8,903,764.
(51) Imt.ClL
GO6F 17/30 (2006.01)
GO6F 11/14 (2006.01)
(52) US.CL
CPC GO6F 11/1453 (2013.01); GO6F 17/3053

(2013.01); GOGF 17/30156 (2013.01); GO6F
17/30489 (2013.01)

(58) Field of Classification Search
USPC 707/37-638, 690-692, 770
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,727,144 A 3/1998 Brady et al.
6,484,161 Bl 11/2002 Chipalkatti et al.
7,065,588 B2* 6/2006 Konda ... GO6F 17/30569
707/E17.006
7,092,956 B2 8/2006 Ruediger
7,191,283 B2 3/2007 Amemiya et al.
7,269,648 B1* 9/2007 Krishnanetal. 709/224
7,567,188 Bl 7/2009 Anglin et al.
8,099,428 B2 1/2012 Kottomtharayil et al.
2009/0300712 A1 12/2009 Kaufmann et al.
(Continued)
OTHER PUBLICATIONS

Kim, C. et al.,“Rethinking Deduplication in Cloud: From Data Pro-
filing to Blueprint”, 2011 7th International Conference on Networked
Computing and Advanced Information Management (NCM), Jun.
2011, pp. 101-104.

(Continued)

Primary Examiner — Hanh Thai
(74) Attorney, Agent, or Firm — Matthew Chung; Roberts
Milotkowski Safran & Cole, P.C.

(57) ABSTRACT

Methods and systems for enhancing reliability in deduplica-
tion over storage clouds are provided. A method includes:
determining a weight for each of a plurality of duplicate files
based on parameters associated with a respective storage
device of each of the plurality of duplicate files; and desig-
nating one of the plurality of duplicate files as a master copy
based on the determined weight.

16 Claims, 7 Drawing Sheets

€2

Deduplication
Master Copy
Location Selection
Engine

Deduplication

Identification

Engine a3

SOJ

US 9,229,819 B2
Page 2

(56)

2009/0313312
2010/0082558
2010/0250501
2010/0332401
2011/0022812
2011/0161291
2011/0185133
2011/0320865
2012/0084414
2012/0084445
2012/0089579
2012/0089775
2012/0166403
2013/0036100
2013/0054518
2013/0110793
2013/0185258
2013/0339848

References Cited

U.S. PATENT DOCUMENTS

Al* 12/2009

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

4/2010
9/2010
12/2010
1/2011
6/2011
7/2011
12/2011
4/2012
4/2012
4/2012
4/2012
6/2012
2/2013
2/2013
5/2013
7/2013
12/2013

Colbeck et al. 707/205

Anglin et al.
Mandagere et al.
Prahlad et al.

van der Linden et al.

Taleck et al.
Reiter et al.
Jain et al.
Brock et al.
Brock et al.
Ranade et al.
Ranade et al.
Kim et al.
Nagpal et al.
Anglin et al.
Chavada et al.
Bestler et al.
Patil et al.

OTHER PUBLICATIONS

Tan, Y. et al., “SAM: A Semantic-Aware Multi-Tiered Source De-
Duplication Framework for Cloud Backup”, Proceedings of the 39th
International Conference on Parallel Processing (ICPP * 10), 2010, 10
pages.

Lokeshwari, Y. V. et al., “Optimized Cloud Storage with High
Throughput Deduplication Approach”, Proceedings published by
International Journal of Computer Applications (IJCA) International
Conference on Emerging Technology Trends (ICETT), 2011, pp.
32-37.

Sun, Z. etal., “DeDu: Building a Deduplication Storage System Over
Cloud Computing”, 15th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), Jun. 2011, pp.
348-355.

Mell, P, “The NIST Definition of Cloud Computing”, National Insti-
tute of Standards of Technology, Information Technology Labora-
tory, Ver 15, Oct. 7, 2009, pp. 1-2.

* cited by examiner

US 9,229,819 B2

Sheet 1 of 7

Jan. 5, 2016

U.S. Patent

£8 suibu3z 1 ,
a uoleLAUSP w1
autbuz uoneoldnpag
LIO}10B}9S UOIBO0T 3

AdoD Jsisep
uopeydnpag LYY ORI S A

7 1 a

QN 4 »/”. A./_“
Aok * Rt
m . o u_
O \N jEYy
/_ TG TNISE A0
N
) 21
vy
.m..w
AR .5
{
e BRSNS ¥ 2t
\,\
<
oy

US 9,229,819 B2

Sheet 2 of 7

Jan. 5, 2016

U.S. Patent

US 9,229,819 B2

Sheet 3 of 7

Jan. 5, 2016

U.S. Patent

JERYCS
33GRIE]

@ ald

@ HEROB0E

@%m

~fo
S2EN)

BEMOS FUB BIMpIY

e ”
4 S saofieoiidy cmw.c 1 EET L
A LA
/s = = ;
Os
e ,w,n,.@
\
m::....::i.....&\\ WARLRERE

W%J. m\t «5 / \\

j

\ \\ uoRosIes

7 7
\\\ \ S/ Rmgn \mmww ﬂw%&v (7
UoNEI0 w RS asn % &2 mum id \\ %%SB me # wn, M&. N
P BEEATAS g .\ ﬁ?&& mem

uoneoydnp

UGHEDLIU \\ i .“m.m.‘w.& \ IS TR
8

US 9,229,819 B2

Sheet 4 of 7

Jan. 5, 2016

U.S. Patent

.\\'.vm

74

.\}mm

ouIsuy uonoIRg
uoneso Ado)
121seN uoneardnpacy

]

y

¥ 914

\Ilow

2381015
g

sutdug
HOREILLIIULP]
uonednpagg

asequie(y

<> uonroudnpaqy

g8

afe1olg
kg

US 9,229,819 B2

Sheet S of 7

Jan. 5, 2016

U.S. Patent

0SS
. . '
NWBUAJ N + SWRUAT,SQ + FWBUA 4 +Q + CWBUA(EQ + TWRUA[ZQ + TWEBUA(J«]Q
+ NOTRIS N + £ONIS S + $OURIS bl + CONRIS €Y + TOURIS,TY + 1o1®ISH 1] =1YSrom
0 10~ £0- | 10°0- | S000- | TO 60 Y00 0¢ [60 SO0
Ne | 5@ 0 £Q [y I wd | <9 v €4 4! 1Y
/\o«m /\omm
LE St £ 008 0057 0s q
113 €6 Y4 00¢ 0001 or v
(Tueui)
(NURUA() (pweuiQ) (greuiq) (zwBuA(g) 3o
mndySnomyg, (gueuiq) Bliig | sjuno) $I0109§ Judlg al e 02
eleq ameredwa], | dp-urds I01I poddeway peeH 201AR(J
9 06 I'e id! 01 08 4q
8 001 [4 [01 001 v
(poneIs) (goneIg) (1onm18)
enes) (conmg) FOUBULIOLIdG doueuiopRg | (Zonmls) WSOM
Aupqemng | AqereAy M peay A9IN I0pUIA | I 90tae(g /\o 34

US 9,229,819 B2

Sheet 6 of 7

Jan. 5, 2016

U.S. Patent

Kdoo 30)seWs o1 S
WB1om 150y3ny a3 Suiaey
Q1] O[SUIS A YR

Adoo
19iseur o} o3 s1aurod
ap1aoid puw jos SHJ} WOIY
SO[I] Juepunpar 292

seouarejard pautop-a1d
uo paseq Adoo 1sewr Ay
103]3s “ydrom 1say3ny ay)
Suraey sopy reanyd 241 JO

—/A

SE9

A

:

Sro

9 914

{Sunmeuial

3

189y 1Y
YL s

09

SN

uisag

198 ap ut 3gTom ¥

sy Iy oy Juraey

(5)37L QU AJTIIUIPT PuE SO[IJ JO 198 IXJU B 309[2§

\

[

Ge9

13$ YOB3 ul 3|1 Uyoea J0J JYSeM B auruLlad

029

SanjeA YSey 0} SUIPIOdIT SIS OIUT S

dnoid pur ‘on[eA ysey owes v JUIARY So[AJnuap]

\

h

519

Pnoro 23eI01S 91} UT PAIOIS

(swa eyep “3°0) SOT1J I0J QUJEA YSBY 01 SUTWHNA(]

\

4

h

019

sonjeA SUnysam

pue sislpweed SMURUAD PUE dTe)S UIRIqO/Autiad]

\

§09

US 9,229,819 B2

Sheet 7 of 7

Jan. 5, 2016

U.S. Patent

a1y mau oy o1 Jyutod v
UIIA Q]1] PRAES Apeale 3y}
9oe[dal pue ‘Adod JoiseLl
I} SB IIJ MU Y] OABS

A

\

Gel JSTam 1aysy

A} 2481 2AES

L 914

[MOU I} SULABS
Jo peajsur Adoo 1opsewr
ay 01 1apurod € ojeam puw
‘£dod Jaisews 3y se o
PIARS-APRAI[R 2IRUSISI(]

10} paisenbas
AL} MU S0

5

0€4

o[1J gora I0J YoM B SUTILINA(]

S

PROJO JUI UF PaJols Apeaife O dledrdnp AInudpy

0L

pnopd
a3rI01S AN TI 3[1] MAU © aABS 0) 150nbal v aa1000y

S04

US 9,229,819 B2

1
ENHANCED RELIABILITY IN
DEDUPLICATION TECHNOLOGY OVER
STORAGE CLOUDS

TECHNICAL FIELD

The present invention generally relates to cloud computing
and, more particularly, to methods and systems for enhancing
reliability in deduplication over storage clouds.

BACKGROUND

Information technology is changing rapidly and now forms
an invisible layer that increasingly touches nearly every
aspect of business and social life. An emerging computer
model known as cloud computing addresses the explosive
growth of Internet-connected devices, and complements the
increasing presence of technology in today’s world. Cloud
computing is a model of service delivery for enabling conve-
nient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, network band-
width, servers, processing, memory, storage, applications,
virtual machines, and services) that can be rapidly provi-
sioned and released with minimal management effort or inter-
action with a provider of the service.

Cloud computing is massively scalable, provides a supe-
rior user experience, and is characterized by new, Internet-
driven economics. In one perspective, cloud computing
involves storage and execution of business data inside a cloud
which is a mesh of interconnected data centers, computing
units and storage systems spread across geographies.

A public storage cloud which stores customer data and is
spanned across geographies commonly has a large number of
redundant files across storage hubs in different locations and
countries. In order to improve the efficiency ofa cloud storage
business, a vendor typically applies data deduplication to
address the redundant data issue.

Data deduplication is a storage concept where redundant
data is eliminated to significantly shrink storage requirements
and improve bandwidth efficiency. In the deduplication pro-
cess, duplicate data is deleted leaving only one copy of the
data to be stored. This single copy is called a master copy and
each deleted copy (referred to as a secondary copy) keeps a
reference pointer which points to this master copy. Some data
deduplication techniques deduplicate the data in a cloud
spread across many storage hubs located in different data-
centers across heterogeneous storage devices.

Deduplication can be accomplished using post deduplica-
tion and/or inline deduplication. In the case of post dedupli-
cation, there is no overhead of deduplication on in-band traf-
fic. Data is stored on devices as it arrives without any concern
for deduplication during this initial storing. A post dedupli-
cation daemon eventually runs sometime after the initial stor-
ing and scans devices for duplicate copies and attempts to
remove redundant copies. In the case of inline deduplication,
deduplication is done on in-band traffic, e.g., essentially in
real time during the initial storing of the data. For example, for
an incoming write request, a search is performed to determine
whether the given data item already exists in the system. In
the case that an already-existing copy (e.g., duplicate file) is
found in the system, the write operation for the incoming
write request is avoided and, instead, a data item pointer is
created to point to the existing copy.

Deduplication can be performed at different levels of
granularity within a computing environment, such as at the
device level, storage pool level, and storage system level. At
the device level, the scope of duplicate copy identification is

10

20

25

30

40

45

2

limited to a single individual device. Storage pool level dedu-
plication is applied to a collection of devices of a same type,
which can be at a single storage pool or storage pools of
homogeneous type. Storage system level deduplication
applies to multiple storage device pools with devices of simi-
lar or heterogeneous type, with the scope of duplicate copies
identification being at the overall system level.

Data deduplication techniques that address the redundant
data issue by keeping a single master copy and deleting other
redundant copies are not designed to intelligently select a
storage drive on which to keep the master copy. Instead, such
deduplication systems simply retain the master copy at the
physical storage location where the first occurrence of one of
the plural duplicate files was detected. If this location happens
to be on relatively unreliable storage, then the master copy
may later become unavailable due to hardware failure or other
factors, causing disruption of data availability in the storage
cloud.

For example, in device level deduplication, two copies of
the same data may be stored respectively at two different
sectors of a disk, e.g., Copy1 stored at an inner disk sector and
Copy?2 stored at an outer disk sector. In the case where the
deduplication mechanism identifies Copy1 first, it will delete
Copy2 and replace Copy2 with a pointer to Copyl. However,
disk operation performance is usually higher on outer sectors
of'adisk compared to inner sectors. By saving the master copy
(e.g., Copyl) on an inner sector, a user accessing Copy2 may
suffer degradation in performance since they are actually
accessing a file stored at an inner sector rather than a file
stored at an outer sector.

As another example, at storage pool level deduplication,
the deduplication mechanism does not consider the distribu-
tion of plural master copies across storage devices. By
chance, one storage device can end up storing a dispropor-
tionately large number of master copies and become over-
loaded compared to other storage devices in the pool. More-
over, the deduplication mechanism does not consider the
active health of the various available storage devices in the
pool. As such, a master copy may be stored on a device with
relatively bad health and that is likely to fail.

Storage system level deduplication can magnify the above
problems associated with performance, load distribution, and
health. Moreover, storage system level deduplication can suf-
fer quality of service (QoS) issues. For example, a storage
system may include a relatively low reliability first storage
(e.g., a JBOD (Just a Bunch Of Disks) controller) and a
relatively high reliability second storage (e.g., a RAID (Re-
dundant Array of Independent Disks) controller). QoS
requirements may mandate storage in a RAID controller.
However, a deduplication mechanism that does not differen-
tiate between the JBOD and RAID storage may save the
master copy atthe JBOD storage instead of the RAID storage.
In such a case, the storage provider may not meet desired QoS
levels and/or clients accessing a copy designated on RAID
controller might suffer in terms of performance.

SUMMARY

In a first aspect of the invention, a method is implemented
in a computer infrastructure including a combination of hard-
ware and software. The method includes determining a
weight for each of a plurality of duplicate files based on
parameters associated with a respective storage device of
each of the plurality of duplicate files. The method also
includes designating one of the plurality of duplicate files as
a master copy based on the determined weight.

US 9,229,819 B2

3

In another aspect of the invention, a system is implemented
in hardware and includes a computer infrastructure operable
to identify duplicate files stored at different storage devices.
The computer infrastructure is also operable to determine a
weight for each one of the duplicate files based on parameters
associated with the storage devices. The computer infrastruc-
ture is also operable to designate one of the duplicate files as
a master copy based on the determined weights.

In an additional aspect of the invention, a computer pro-
gram product includes a computer usable storage medium
having readable program code embodied in the storage
medium. The computer program product includes at least one
component operable to determine a hash value for each of a
plurality of files. The at least one component is also operable
to determine a set of duplicate files based on the hash values.
The at least one component is also operable to determine a
weight for each one of the duplicate files, wherein the weight
is based on parameters associated with storage devices. The at
least one component is also operable to designate a master
copy of the set based on the weight of each one of the dupli-
cate files. The at least one component is also operable to
nominate remaining files in the set, other than the master
copy, for deletion.

In a further aspect of the invention, a method of dedupli-
cation includes providing a computer infrastructure being
operable to determine a hash value for each of a plurality of
files. The computer infrastructure is also operable to define
sets of the plurality files based on the hash values. The com-
puter infrastructure is also operable to, for each respective one
of the sets: determine a highest weight file in the respective
set, wherein the weight is based on parameters associated
with storage devices; designate the highest weight file as a
master copy for the respective set; and nominate remaining
files in the respective set, other than the master copy, for
deletion.

In another aspect of the invention, a computer system for
file deduplication includes a CPU, a computer readable
memory and a computer readable storage media. The system
includes first program instructions to identify a set of dupli-
cate files. The system includes second program instructions to
determine a weight for each one of the duplicate files. The
system includes third program instructions to designate a
master copy of the set based on the weight of each one of the
duplicate files. The system includes fourth program instruc-
tions to delete remaining files of the set, other than the master
copy, and replace the remaining files with respective pointers
pointing to the master copy. The first, second, third, and
fourth program instructions are stored on the computer read-
able storage media for execution by the CPU via the computer
readable memory. The weight is based on parameters associ-
ated with storage devices and weighting factors defined for
the parameters. The parameters are related to at least one of
reliability, health, and user preference of the storage devices.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present invention is described in the detailed descrip-
tion which follows, in reference to the noted plurality of
drawings by way of non-limiting examples of exemplary
embodiments of the present invention.

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to embodiments of the present invention;

FIG. 3 depicts abstraction model layers according to
embodiments of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 depicts a data deduplication block diagram in accor-
dance with aspects of the invention;

FIG. 5 depicts exemplary parameters and weighting in
accordance with aspects of the invention; and

FIGS. 6 and 7 depict exemplary flow diagrams in accor-
dance with aspects of the invention.

DETAILED DESCRIPTION

The present invention generally relates to cloud computing
and, more particularly, to methods and systems for enhancing
reliability in deduplication over storage clouds. In accordance
with aspects of the invention, a master copy of a set of dupli-
cate files is chosen based on parameters relating to reliability,
health, and/or user preference of the respective storage
devices on which the duplicate files are stored. The param-
eters may include static and/or dynamic parameters associ-
ated with the respective storage devices. In embodiments, a
respective weight is determined for each one of the duplicate
files based on the parameters. The file having the highest
weight is nominated as the master copy and the other files
having lower weights are nominated for deletion. In this
manner, implementations of the invention advantageously
provide methods and systems for intelligently selecting a
master copy based on predefined parameters associated with
reliability, health, and/or user preference of the storage
devices on which duplicate files are stored.

Inaccordance with aspects of the invention, the nomination
of the master copy for a set of duplicate files is influenced
based on parameters associated with a storage device of each
file. The parameters may include, for example, SMART (Self
Monitoring Analysis and Reporting Technology) attributes;
reliability attributes (e.g., RAID levels); user-preferred ven-
dors; and QoS attributes. For example, SMART is a technol-
ogy that enables a computer to predict the future failure of
hard disk drives and has become an industry standard for hard
drive manufacturers. Through the SMART technology, hard
disk drives incorporate a suite of advanced diagnostics that
monitor the internal operations of a drive and provide an early
warning for many types of potential problems. When a poten-
tial problem is detected, the hard drive can be repaired or
replaced before any data is lost or damaged. According to
aspects of the invention, a deduplication process includes
selecting a master copy at least partly based on SMART
information associated with the storage device of each file in
the set of redundant files being deduplicated.

RAID is atechnology that provides increased storage func-
tions and reliability through redundancy that is achieved by
combining multiple disk drive components into alogical unit,
where data is distributed across the drives in one of several
ways called RAID levels. Administrators may have choice
over different RAID level governed storage systems for
appropriate reliability and/or performance. According to
aspects of the invention, a deduplication process includes
selecting a master copy at least partly based on storage device
reliability information, such as RAID information.

System administrators may prefer storage devices associ-
ated with particular vendors and/or manufacturers over those
provided by other vendors and/or manufacturers. According
to aspects of the invention, a deduplication process includes
selecting a master copy at least partly based on user prefer-
ences of sources of storage devices.

QoS parameters are commonly specified for storage
devices. The QoS parameters may include, for example,
maximum sequential and random READ/WRITE perfor-
mance in megabytes per second (MB/s), as well as measures
for availability, durability, and mean time between failure.

US 9,229,819 B2

5

According to aspects of the invention, a deduplication process
includes selecting a master copy at least partly based on QoS
parameters.

Cloud Computing

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

For convenience, the Detailed Description includes the
following definitions which have been derived from the
“Draft NIST Working Definition of Cloud Computing” by
Peter Mell and Tim Grance, dated Oct. 7, 2009, which is cited
in an IDS filed herewith, and a copy of which is attached
thereto.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or

10

15

20

25

30

35

40

45

50

55

60

65

6

even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
not intended to suggest any limitation as to the scope ofuse or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove. FIG. 1 can also represent a comput-
ing infrastructure capable of performing and/or implement-
ing tasks and/or functions of the methods described herein.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

US 9,229,819 B2

7

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16. In embodiments, the
computer systeny/server 12 comprises or communicates with
a deduplication identification engine 80 (referred to herein as
identification engine 80) and a deduplication master copy
location selection engine 83 (referred to herein as selection
engine 83) as described in greater detail herein.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments

10

15

20

25

30

35

40

45

50

55

60

65

8

of'the invention as described herein. For example, some or all
of the functions of the identification engine 80 and/or selec-
tion engine 83 may be implemented as one or more of the
program modules 42. Additionally, the identification engine
80 and/or selection engine 83 may be implemented as sepa-
rate dedicated processors or a single or several processors to
provide the functionality described herein. In embodiments,
the identification engine 80 and/or selection engine 83 per-
forms one or more of the processes described herein, includ-
ing but not limited to: identify sets of redundant files eligible
for deduplication; determine a weight for each file in each set;
and nominate the highest weighted file in each set as the
master copy for that set.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
1/O interfaces 22. Still yet, computer system/server 12 can
communicate with one or more networks such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20.
As depicted, network adapter 20 communicates with the other
components of computer system/server 12 via bus 18. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples, include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID (redundant
array of inexpensive disks or redundant array of independent
disks) systems, tape drives, and data archival storage systems,
etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage

US 9,229,819 B2

9

devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and deduplication identification and location
selection. In accordance with aspects of the invention, the
deduplication identification and location selection workload/
function operates to perform one or more of the processes
described herein, including but not limited to: identify sets of
redundant files eligible for deduplication; determine a weight
for each file in each set; and nominate the highest weighted
file in each set as the master copy for that set.

As will be appreciated by one skilled in the art, aspects of
the present invention, including the identification engine 80
and/or selection engine 83 and the functionality provided
therein, may be embodied as a system, method or computer
program product. Accordingly, aspects of the present inven-
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi-
dent software, micro-code, etc.) or an embodiment combin-
ing software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, aspects of the present invention may take the form
of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro-
gram code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)

20

25

30

35

40

45

50

55

60

65

10

of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

US 9,229,819 B2

11

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 4 depicts a deduplication block diagram in accor-
dance with aspects of the invention. In embodiments, files (or
other data) 75 and 75' flow from one or more local computing
devices 54, 54' to a deduplication system comprising com-
puting node 10 and a plurality of data storage devices 90a and
905, which may comprise, for example, storage nodes in the
cloud as depicted in FIG. 2. The local computing device 54
and 54' may be similar to the local computing devices 54 A-N
depicted in FIG. 2. The node 10 may include or communicate
with the identification engine 80 and selection engine 83
described herein. The node 10 may also include or commu-
nicate with a deduplication database 85, as described in
greater detail herein. Although only two files 75 and 75' and
storage devices 90a and 905 are shown, it is to be understood
that any number of files and storage devices may be used
within the scope of the invention, and the number of files may
differ from the number of storage devices.

In a post deduplication implementation in accordance with
aspects of the invention, the files 75 and 75' are stored on the
respective storage devices 90a and 905b. At a later time after
the files 75 and 75" are stored, the identification engine 80 and
selection engine 83 perform a deduplication process to select
a master copy and delete redundant copies of the files. In
embodiments, the identification engine 80 identifies the files
75 and 75" as duplicate files eligible for deduplication. Based
on the identification of files 75 and 75' as duplicates, the
selection engine 83 determines a respective weight for each
one of the files 75 and 75' based on one or more static param-
eters and/or one or more dynamic parameters associated with
the storage devices 90a and 905 on which the files 75 and 75'
are stored. In embodiments, the selection engine 83 nomi-
nates the file 75 or 75' having the highest weight as the master
copy and nominates the other file for deletion.

In an inline deduplication implementation in accordance
with aspects of the invention, one file (e.g., file 75) is stored at
a storage device (e.g., data storage 90a). At a later time, the
computing device 54' issues a command to save file 75' (e.g.,
to storage device 905). Upon receipt of the command to save
file 75', the identification engine 80 searches all available
storage devices for duplicate files and identifies file 75 as
beinga duplicate to file 75'. Based on the identification of files
75 and 75" as duplicates, the selection engine 83 determines a
respective weight for each one of the files 75 and 75' based on
one or more static parameters and/or one or more dynamic
parameters associated with the storage devices 90a and 905.
Inembodiments, the selection engine 83 nominates the file 75
or 75' having the highest weight as the master copy and
nominates the other file for deletion. For example, when the
already-stored file (e.g., file 75 at storage device 90a) has a
higher weight than file 75', then file 75' is not stored at storage
device 905. Instead, a pointer is created for file 75' that points
to file 75 (e.g., the master copy in this instance). On the other
hand, when file 75' has a higher weight than file 75, then file
75' is designated as the master copy and stored at storage
device 905 and file 75 is deleted and replaced with a pointer
that points to file 75'".

In both the post deduplication and inline deduplication
implementations, the identification engine 80 may identify

10

15

20

25

30

35

40

45

50

55

60

65

12

duplicate files using hash algorithms, as is understood in the
art. For example, the identification engine 80 may run a hash
algorithm that generates a unique key for each file 75 and 75'.
The identification engine 80 compares the unique key for
each file to keys stored in the deduplication database 85, e.g.,
by looking up the unique key for each file in the deduplication
database 85 to determine if the key already exists (which
indicates that the particular file has been previously written to
one of the storage devices).

Moreover, in both the post deduplication and inline dedu-
plication implementations, the static parameters may be
stored at the deduplication database 85, which may be sepa-
rate from or included in the node 10. In embodiments, the
dynamic parameters may be determined by the selection
engine 83 by polling each storage device 90a and 905 during
the deduplication process. Alternatively, the dynamic param-
eters may be communicated by each storage device 90a and
905 to the deduplication database 85 and stored therein at
regular intervals, and the selection engine may determine the
dynamic parameters by accessing the deduplication database
85.

FIG. 5 depicts exemplary static and dynamic parameters
and weighting in accordance with aspects of the invention.
The types and numbers of different parameters used in deter-
mining a weight in accordance with aspects of the invention is
not limited to the example depicted in FIG. 5 and, instead, any
number and type of static parameters and/or any number and
type of dynamic parameters may be used in determining a
weight of a file within the scope of the invention.

Table 510 depicts examples of static parameters (e.g.,
Staticl, Static2, . . ., StaticM) for devices “A” and “B” in
accordance with aspects of the invention. In this example, the
static parameters include: vendor weight; MTBF (mean time
between failure); read performance; write performance;
availability; and durability. In embodiments, the devices “A”
and “B” correspond to storage devices in a cloud environment
or other multi-device storage system. For example, the
devices “A” and “B” may correspond respectively to storage
devices 90a and 905 described in FIG. 4.

According to aspects of the invention, a value (e.g., a
numeric value) is provided for each static parameter (e.g.,
Staticl, Static2, . . ., StaticM) for each device (e.g., “A” and
“B”). For example, device “A” has a value of “100” for
Staticl, a value of “10” for Static2, and value of “2” for
Static3, etc. Similarly device “B” has a value of “80” for
Staticl, a value of “10” for Static2, and value of “1.4” for
Static3, etc.

In accordance with aspects of the invention, the numeric
values for the static parameters represent a valuation of each
device that can be used to compare one device to another. For
example, device “A’ has a value of “100” for Staticl, whereas
device “B” has a value of “80” for Staticl. As such, device
“A” is preferable to device “B” in terms of the vendors that
supply the respective devices (e.g., seller and/or manufacturer
of the storage device). As another example, devices “A” and
“B”have respective values of “2”” and “2.1” for Static4, mean-
ing that device “B” is preferable to device “A” in terms of
write performance.

In embodiments, the numeric values for the static param-
eters for each device are predefined and stored, e.g., in dedu-
plication database 85. Each numeric value may be manually
input by a user (e.g., using I/O interface 22) and/or automati-
cally populated in the database 85 by a vendor and/or service
provider.

Still referring to FIG. 5, table 520 depicts examples of
dynamic parameters (e.g., Dynam1, Dynam?2, .. ., DynamN)
for devices “A” and “B” in accordance with aspects of the

US 9,229,819 B2

13
invention. The devices “A” and “B” in table 520 correspond to
the same devices “A” and “B” of table 510.

In embodiments, the dynamic parameters are SMART
attributes. In the example shown in FIG. 5, Dynaml is a
SMART attribute representing the head flying height of a
storage device. A downward trend in flying height will often
presage a head crash. Dynam?2 is a SMART attribute repre-
senting the number of remapped sectors. A storage device
may be approaching failure when the drive is remapping
many sectors due to internally-detected errors. Dynam3 is a
SMART attribute representing ECC (Error Correction Code)
use and error counts associated with a storage device. A high
number of errors encountered by the drive, even if corrected
internally, often indicates a reliability problem with the stor-
age device. The trend, as well as the actual count, can be
informative. Dynamd4 is a SMART attribute representing the
spin-up time associated with a storage device. High spin-up
times and/or changes in spin-up time can reflect problems
with the spindle motor. Dynam5 is a SMART attribute repre-
senting the temperature associated with a storage device.
High temperatures and/or increases in drive temperature
often signal spindle motor problems. DynamN is a SMART
attribute representing the data throughput associated with a
storage device. Low data transfer rate of the drive can signal
various internal problems with the storage device.

According to aspects of the invention, a value (e.g., a
numeric value) is provided for each dynamic parameter (e.g.,
Dynam1, Dynam?2, . . ., DynamN) for each device (e.g., “A”
and “B”). For example, device “A” has a value of “40” for
Dynam1, a value of “1000” for Dynam2, and value of “500”
for Dynam3, etc. Similarly, device “B” has a value of “50” for
Dynam1, a value of “2500” for Dynam2, and value of “800”
for Dynam3, etc.

In embodiments, the numeric values for the dynamic
parameters are automatically updated periodically after some
fixed time interval. As but one example, a client application
residing at a particular storage device (e.g., Device ID “A”
corresponding to storage device 90a) may periodically trans-
mit values of the dynamic parameters for that storage device
to the deduplication database 85 (e.g., the values are pushed
by the storage devices). In another example, an application
periodically polls the various storage devices and obtains the
values of the dynamic parameters for each storage device
(e.g., the values are pulled from the storage devices). In yet
another example, the selection engine 83 obtains the values of
the dynamic parameters for each storage device in real time
during a deduplication process, e.g., by polling the various
storage devices.

Still referring to FIG. 5, tables 530 and 540 contain weight-
ing factors (1, 2, . . ., pM and 81, 82, . . ., ON) that
correspond to the static and dynamic parameters of tables 510
and 520, respectively. For example, weighting factor 1 cor-
responds to static parameter Staticl, weighting factor 2 cor-
responds to static parameter Static2, etc. Also, weighting
factor 81 corresponds to dynamic parameter Dynaml,
weighting factor 02 corresponds to dynamic parameter
Dynam?2, etc. The weighting factors are used in conjunction
with the static and dynamic parameters to determine a weight
for any given file based on the attributes of the storage device
where the file is stored. The numeric values of the weighting
factors can be user defined, system defined, or provided by a
third party (e.g., service provider). The weighting factors can
be stored in the deduplication database 85. In embodiments,
the numeric values of the weighting factors can be initially
defined and later adjusted to provide any desired relative
weighting to the static and dynamic parameters. For example,
the numeric values of the weighting factors can be defined to

5

10

15

20

25

30

35

40

45

50

55

60

65

14

substantially normalize the static and dynamic parameters, so
that each parameter has substantially the same weight,
although any other desired weighting schemes may be used
within the scope of the invention.

Expression 550 of FIG. 5 depicts an exemplary formula for
determining a weight of a file in accordance with aspects of
the invention. In embodiments, the weight of a given file is
determined by summing the products of the weighting factors
and corresponding static and dynamic parameters, as shown
by expression 550. Using the data in tables 510, 520, 530, and
540 and the expression 550, the selection engine 83 deter-
mines the weight for a file stored at location “A” (e.g., file 75
stored at storage device 90a) to be 24.5. Similarly, the selec-
tion engine 83 determines the weight for a file stored at
location “B” (e.g., file 75' stored at storage device 905) to be
11.5. In embodiments, the selection engine 83 designates the
file with the highest weight as the master copy. Accordingly,
based on these determined weights in this example, the selec-
tion engine 83 designates the file stored at location “A” (e.g.,
file 75 stored at storage device 90a) as the master copy and
nominates the file stored at location “B” (e.g., file 75' stored at
storage device 90b) for deletion and replacement with a
pointer to the master copy. An alternate and equivalent way of
writing Expression 550 is:

M N
Weight= [Z Bm *Smticm] + [Z O *Dynamn]
m=1

n=1

where:

“Static,,” is a value of an m* static parameter associated
with the storage device of the particular one of the
plurality of files;

“B” is a value of an m* static weighting factor;

“M” is a number of the static parameters;

“Dynam,,” is a value of an n”* dynamic parameter asso-
ciated with the storage device of the particular one of
the plurality of files;

“8” is a value of an n” dynamic weighting factor; and

“N” is a number of the dynamic parameters.

In accordance with aspects of the invention, the static and
dynamic parameters are indicative of the reliability, health,
and/or user preference of the storage devices where duplicate
files are stored. In this manner, by calculating a weight for
each file according to expression 550, the deduplication sys-
tems and methods in implementations of the invention
enhance the deduplication process by storing the master copy
in a most reliable and/or user preferred storage device.

Flow Diagrams

FIGS. 6 and 7 show exemplary flows for performing
aspects of the present invention. The steps of FIGS. 6 and 7
may be implemented in any of the environments of FIGS. 1-4,
for example.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession

US 9,229,819 B2

15

may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. The software and/or computer program product can
be implemented in the environment of FIGS. 1-4. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The medium can be an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system
(or apparatus or device) or a propagation medium. Examples
of a computer-readable storage medium include a semicon-
ductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-
only memory (ROM), a rigid magnetic disk and an optical
disk. Current examples of optical disks include compact disk-
read only memory (CD-ROM), compact disc-read/write
(CD-R/W) and DVD.

FIG. 6 depicts an exemplary flow for a post deduplication
process in accordance with aspects of the present invention.
At step 605, a deduplication system (e.g., a computer system
12 running the identification engine 80 and selection engine
83) defines and/or obtains the static parameters, dynamic
parameters, and weighting values (e.g., information similar to
that shown in Tables 510, 520, 530, and 540 of FIG. 5). In
embodiments, the deduplication system obtains this informa-
tion through at least one of user input, accessing such infor-
mation in a database (e.g., deduplication database 85), and
polling the storage devices for such information, e.g., as
described above with respect to FIG. 5. Although step 605 is
depicted in FIG. 6 as occurring prior to steps 610 and 615, it
is noted that step 605 may additionally or alternatively be
performed between steps 610 and 615 or between steps 615
and 620.

At step 610, the identification engine (e.g., identification
engine 80) determines a hash value for each file stored in a
storage cloud or other distributed storage system. In embodi-
ments, the identification engine applies a hash algorithm to
each file (e.g., files 75, 75', etc.) stored at various storage
devices (e.g., storage devices 90a, 905, ctc.) in a storage
cloud, e.g., as described above with respect to FIG. 4.

At step 615, the identification engine identifies files having
the same hash value and groups files into sets according to the
hash values. For example, all files having a firsthash value are
grouped into a first set, all files having a second hash value are
grouped into a second set, etc. Each set thus contains a group
of duplicate files that are eligible for deduplication, since all
files in any given set each have a same hash value.

At step 620, the selection engine (e.g., selection engine 83)
determines a weight for each file in each set. In accordance
with aspects of the invention, the selection engine determines
a weight of a particular file based on static parameter values,
dynamic parameter values, and weighting factor values from
step 605, e.g., using expression 550 in the manner described
with respect to FIG. 5.

10

15

20

25

30

35

40

45

50

55

60

65

16

At step 625, the selection engine analyzes a particular set of
files to determine which file in the set has the highest weight.
For example, for a particular set of duplicate files (identified
atstep 615), the selection engine compares the weight of each
file (determined at step 620) and identifies the file(s) having
the highest weight.

At step 630, the selection engine determines whether there
is only one file having the highest weight in the set. It is
possible that two files in a set of duplicate files will have the
same weight. In the case that there is only one file having the
highest weight in the given set, then at step 635, the selection
engine designates that one file as the master copy for this set
of duplicate files.

On other hand, when plural files in a set each have an equal
highest weight, then at step 640, the selection engine deter-
mines the master copy from these highest weight files based
on pre-defined preferences. For example, the system and
method may permit a user to designate one of the static or
dynamic parameters (e.g., Staticl: vendor weight) as a tie-
breaker parameter. As another example, the tie-breaker
parameter may be an additional parameter not included in the
static and dynamic parameters. For example, the tie-breaker
parameter may be a number of master copies already stored
on a storage device with the file, a physical location of the file
copy on a storage device, or other parameters that are ascer-
tainable by the selection engine. At step 640, when plural files
in a set each have an equal highest weight, the selection
engine compares the values of the tie-breaker parameter for
each of the files having the equal highest weight, and desig-
nates the file with the highest value of tie-breaker parameter
as the master copy.

At step 645, the deduplication system deletes the remain-
ing files in the set (e.g., all files in the set except for the master
copy as determined at step 635 or 640). In normal deduplica-
tion fashion, the deleted files are replaced with a pointer that
points to the master copy.

At step 650, the deduplication system determines if there
are any remaining sets to analyze for a master copy. When all
sets identified at step 615 have not yet been analyzed through
steps 630, 635 or 640, and 645, then the process returns to step
625 to analyze the next set. On the other hand, when all set
have been analyzed for a master copy (e.g., steps 630, 635 or
640, and 645), then the process ends. In this manner, imple-
mentations of the invention may be used to perform a post
deduplication in which a master copy is selected based on
weights described herein.

FIG. 7 depicts an exemplary flow for an inline deduplica-
tion process in accordance with aspects of the present inven-
tion. At step 705, a deduplication system receives a request
for storing a new file at a storage device in the cloud. In
embodiments, this involves a computing device (e.g., node
10) receiving a request from a user (e.g., local computing
device 54) to storea file (e.g., file 75) at a location in the cloud.
The request may include a designation of a particular storage
device on which to save a new file.

At step 710, the deduplication system identifies a duplicate
file that is already stored in the cloud. This may be performed
in a manner similar to steps 610 and 615 described with
respect to FIG. 6. For example, an identification engine (e.g.,
identification engine 80) running on the computing device
may determine a hash value for the file to be saved (from step
705) and compare this hash value to hash values of other files
already stored in the cloud. Any file having a same hash value
as the file from step 705 is a duplicate of that file.

At step 715, the deduplication system determines a weight
for the new file of step 705 and the duplicate file identified at
step 710. This may be performed in a manner similar to step

US 9,229,819 B2

17

620 described with respect to FIG. 6. For example, a selection
engine (e.g., selection engine 83) running on the computing
device may determine a respective weight for each file using
static parameters (e.g., Table 510), dynamic parameters (e.g.,
Table 520), weighting factors (e.g., Tables 530 and 540), and
a weighting expression (e.g., expression 550). In order to
perform step 715, the computing device running the selection
engine may obtain the values of the static parameters,
dynamic parameters, and weighting factors in any suitable
manner, such as those already described herein.

At step 720, the system determines whether the new file
(from step 705) or the already-saved file (from step 710) has
the higher weight by comparing the respective weights of
each file. When the new file has the higher weight, then at step
725 the new file is saved as the master copy at its designated
storage device, and the already saved file is deleted and
replaced with a pointer that points to the new file. On the other
hand, when the already saved file has the higher weight, then
at step 730, the already saved file is marked as the master
copy. Still referring to step 730, a pointer that points to the
master copy is created and saved instead of saving the new
file. In this manner, implementations of the invention may be
used to perform an inline deduplication in which a master
copy is selected based on weights described herein.

In embodiments, a service provider, such as a Solution
Integrator, could offer to perform the processes described
herein. In this case, the service provider can create, maintain,
deploy, support, etc., the computer infrastructure that per-
forms the process steps of the invention for one or more
customers. These customers may be, for example, any busi-
ness that uses technology and provides or utilizes services. In
return, the service provider can receive payment from the
customer(s) under a subscription and/or fee agreement and/or
the service provider can receive payment from the sale of
advertising content to one or more third parties.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed:

1. A method of file deduplication implemented in a com-
puter infrastructure comprising a combination of hardware
and software, the method comprising:

performing, by a computer processor, a file deduplication

process comprising:

determining, by the computer processor, a weight for
each of a plurality of duplicate files, wherein the
weight is based on: (i) parameters associated with a
respective storage device of each of the plurality of
duplicate files and (i) a respective weighting factor
associated with each one of the parameters; and

obtaining numerical values for the each one of the
parameters and the respective weighting factors; and

designating, by the computer processor, one of the plu-
rality of duplicate files as a master copy based on the
determined weight.

2. The method of claim 1, wherein the parameters comprise
static parameters and dynamic parameters.

3. The method of claim 1, wherein the parameters comprise
atleast one of vendor weight, mean time between failure, read

10

15

20

25

30

35

40

45

50

55

60

18

performance, write performance, availability, and durability
of a respective said storage device.

4. The method of claim 1, wherein the parameters comprise
at least one of head flying height, remapped sector, error
counts, spin up time, temperature, and data throughput of a
respective said storage device.

5. The method of claim 1, wherein the weight of a particu-
lar one of the plurality of files is determined according to:

M N
Weight= [Z B *Smticm] + [Z S *Dynamn]
m=1

n=1

where:

“Static,,” is a value of an m” static parameter associated
with the storage device of the particular one of the
plurality of files;

“B” is a value of an m” static weighting factor;

“M” is a number of the static parameters;

“Dynam,,” is a value of an n” dynamic parameter asso-
ciated with the storage device of the particular one of
the plurality of files;

“§” is a value of an n” dynamic weighting factor; and

“N” is a number of the dynamic parameters.

6. The method of claim 1, further comprising replacing
remaining ones of the plurality of duplicate files, other than
the master copy, with respective pointers pointing to the mas-
ter copy.

7. The method of claim 1, further comprising performing
the determining and the designating as part of a post dedupli-
cation process in a cloud environment.

8. The method of claim 1, further comprising performing
the determining and the designating as part of an inline dedu-
plication process in a cloud environment.

9. The method of claim 1, wherein a service provider at
least one of creates, maintains, deploys and supports the
computer infrastructure.

10. The method of claim 1, wherein steps of claim 1 are
provided by a service provider on a subscription, advertising,
and/or fee basis.

11. A system comprising:

one or more computer processors;

one or more computer readable hardware storage device;

program instructions stored on the one or more computer

readable hardware storage device for execution by at
least one of the one or more processors, the program
instructions comprising:

program instructions to identify duplicate files stored at

different storage devices;

program instructions to determine a weight for each one of

the duplicate files based on:

(1) parameters associated with the storage devices and (ii)
weighting factors defined for the parameters; and

program instructions to designate one of the duplicate files

as a master copy based on the determined weights.

12. The system of claim 11, wherein the parameters are
related to at least one of reliability, health, and user preference
of'the storage devices on which the duplicate files are stored.

13. The system of claim 11, wherein:

the parameters include at least one of vendor weight, mean

time between failure, read performance, write perfor-

mance, availability, and durability of the storage
devices; and

the parameters include at least one of head flying height,

remapped sector, error counts, spin up time, tempera-

ture, and data throughput of the storage devices.

US 9,229,819 B2

19

14. A computer program product comprising:

one or more computer readable hardware storage device
and program instructions stored on the one or more
computer readable hardware storage device, the pro-
gram instructions comprising:

program instructions to determine a hash value for each of

a plurality of files;

program instructions to determine a set of duplicate files

based on the hash values; and

program instructions to deduplicate the set of duplicate

files, wherein the deduplicating comprises:

determining a weight for each one of the duplicate files,
wherein the weight is based on parameters associated
with storage devices;

designating a master copy of the set based on the weight
of each one of the duplicate files; and

nominating remaining files in the set, other than the
master copy, for deletion.

15. The computer program product of claim 14, wherein
the parameters comprise static parameters that are related to
at least one of reliability, health, and user preference of the
storage devices.

16. The computer program product of claim 14, wherein
the storage devices are different nodes in a cloud environ-
ment.

25

20

